
Network modeling with NetBox

Tom Ryder

tom@sanctum.geek.nz/https://sanctum.geek.nz/

IP Address Management (IPAM)

- Even a modest home lab now might use many IP addresses:
 - For a home lab, legacy IP addresses probably in an RFC 1918 subnet, like 192.168.1.0/24, or 10.0.0.0/8...
- Keep track of which IP addresses are on which machine
- Organise IP addresses into prefixes
- Both standard (IPv6) and legacy (IPv4)

Datacenter Infrastructure Management (DCIM)

- Similar software allowed you to track what's in your server room:
 - Physical hosts...
 - Rack space...
 - Cable connections...
 - Power equipment...

But wait, there's more...

- But you might like to track many other properties of even a small home network:
 - Virtual machines...
 - VLANs (802.1Q)...
 - VPNs...
 - Tunnels...

For humans and machines

- Ideally, the system functions as a single source of truth about the network's state.
 - "If it's not in there, it's not real yet."
- Humans consult it to find inventory, spare addresses...
- Computers consult it in much the same way, consuming it via an API.

Ideally...

...we do all that without using **spreadsheets** in Microsoft Excel LibreOffice Calc.

4	Α	В	С	D	E	F
1	IP Address 💌	Subnet Mask	▼ Status	Description	▼ DNS	MAC Address
2	10.1.2.0	255.255.255.0	Used	Network Address		
3	10.1.2.1	255.255.255.0	Used	Router	R-01-001	98-48-27-78-E0-AF
4	10.1.2.2	255.255.255.0	Used	Switch	S-01-001	48-4D-7E-E5-16-C6
5	10.1.2.3	255.255.255.0	Available	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
6	10.1.2.4	255.255.255.0	Available			
7	10.1.2.5	255.255.255.0	Available			
8	10.1.2.6	255.255.255.0	Available			
9	10.1.2.7	255.255.255.0	Available			
10	10.1.2.8	255.255.255.0	Available			
11	10.1.2.9	255.255.255.0	Available			
12	10.1.2.10	255.255.255.0	Available			
13	10.1.2.11	255.255.255.0	Available			
14	10.1.2.12	255.255.255.0	Available			
15	10.1.2.13	255.255.255.0	Available			
16	10.1.2.14	255.255.255.0	Available			
17	10.1.2.15	255.255.255.0	Available			
18	10.1.2.16	255.255.255.0	Available			

Enter NetBox—1/2

- "The Premier Network Source of Truth", for "modeling and documenting modern networks."
- Very many object types
 - Most extensible with custom fields
- REST API for objects (read-write)
- Regularly updated
- Python (Django-based) web application

Enter NetBox—2/2

- There's an "Enterprise" version they host for you with support...
- ...but it is **free and open-source software**, when installed self-hosted.
 - License is Apache-2.0 (permissive)

Scales nicely

Public demo

- There's a public demo of NetBox at https://demo.netbox.dev/
- Create an account, log in, and try it out without having to install.
- It gets reset every day at 04:00 UTC, so you can't really break anything.

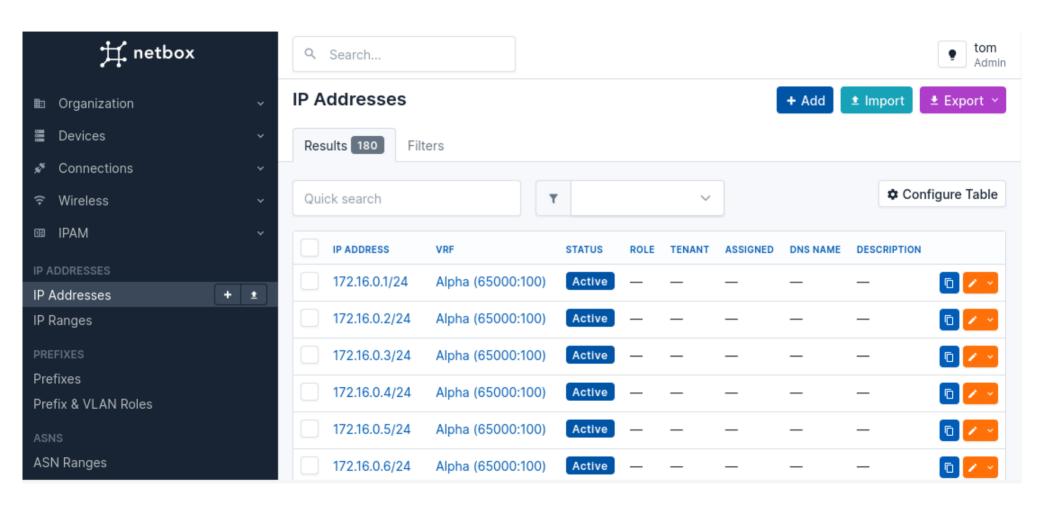
Supported platforms

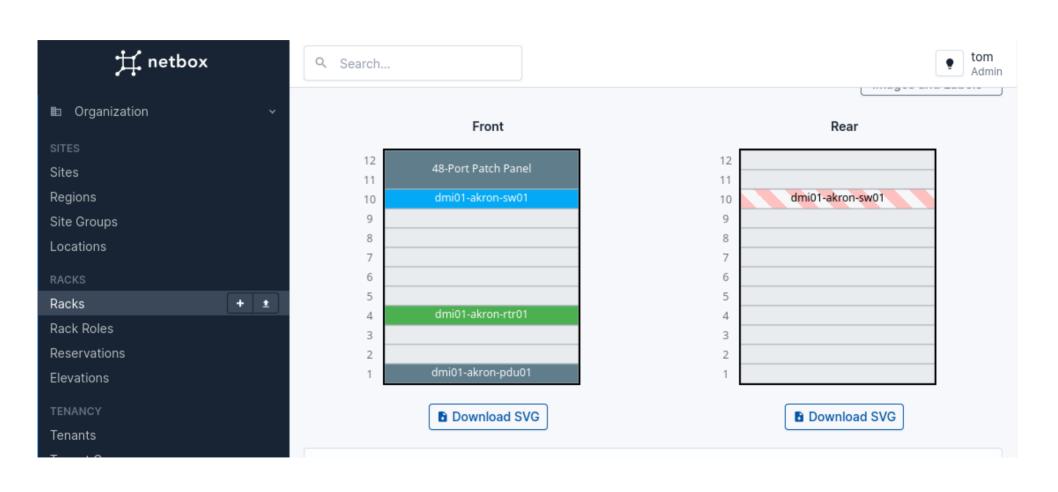
- Ubuntu Linux and CentOS are supported, and have installation instructions.
- However, I had no problems making it work on my Debian GNU/Linux server.
- NetBox should be installable on any GNU/Linux distribution with a decent set of packages...or a dedicated administrator.

Installation—1/2

- Not exactly point-and-click, but not too bad.
 - Install PostgreSQL and set up database
 - Install Redis object cache (warning!)
 - Install NetBox components
 - Install web server (Gunicorn or uWSGI)
 - Install reverse proxy (Apache HTTPD or Nginx)

Aside: Redis is dead to us


- Versions of Redis v7.4 or newer are not free software.
- A free software replacement like Valkey will hopefully be better-packaged in e.g. Debian GNU/Linux very soon.
- Use that for your NetBox instance instead.
- Don't depend on non-free software for your network modeling!



Installation—2/2

- There's also a Docker image, if you're into that.
- Tom is *not* into that.[™]

Demo

- We'll log in to, and click around in, an instance of NetBox v4.0.8.
- It's loaded it up with demo data so we can get a better idea of how it all looks.
- This will be audience-directed: call out if you want Tom to click on anything that looks interesting.

REST API—1/3

- Don't interact directly with the PostgreSQL database, especially if you're POSTing or PUTting.
- Use a **REST API** (HTTP requests) to create, update, and delete any record type.
- All done with JSON, in Django style.

REST API—2/3

 You can just use cURL for ad-hoc, one-off requests; it works fine:

```
$ curl -H 'Authorization: Token
123abc...' -H 'Accept:
application/json'
https://netbox.example.com/api/ipam/v
lans/ | jq
```

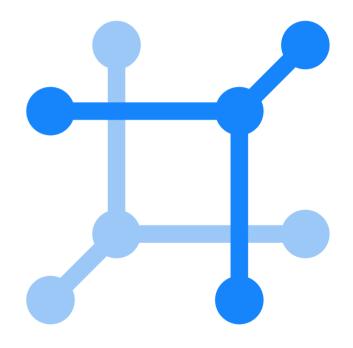

REST API—3/3

- However, it's probably best to use a library.
- If there's a dedicated NetBox module for your language great, use that!
 - pynetbox has served me well so far:
 - \$ pip install pynetbox
- But any general HTTP REST client library that supports JSON should do just fine. There aren't any nasty surprises.

```
#!python3
import pynetbox
def get_devices(netbox, eol_from, eol_to):
    Given a Netbox API object and two date objects, return devices with an
    expiry date between the two dates.
   devices = sorted(netbox.dcim.devices.filter(
        cf_support_expiration_date__gt=eol_from.isoformat(),
       cf_support_expiration_date__lt=eol_to.isoformat(),
       exclude='config_context',
    ), key=lambda device: device.custom_fields['support_expiration_date'])
   return devices
```

Ideas

- Generate monitoring system config (Nagios Core, Icinga...)
- Generate DNS zones
- Use as the basis for customer billing
- Use with config management (Ansible, Chef, Puppet...)
 - Look up what this server is supposed to do in NetBox?
 - Sure, why not?


Questions?

- Docs
- Demo data
- Python module
- Single source of truth
- Awesome NetBox

Email: tom@sanctum.geek.nz

Website: https://sanctum.geek.nz/

Fediverse: @tejr@mastodon.sdf.org

